Publications produced within the NaToxAq project
[50] Hama, J.; Jørgensen, D.B.G.; Diamantopoulos, E.; Bucheli, T.D.; Hansen, H.C.B.; Strobel, B.W. (2022) Indole and quinolizidine alkaloids from blue lupin leach to agricultural drainage water. Sci. Tot. Environ. 834: 155283, DOI: 10.1016/j.scitotenv.2022.155283
[49] Kisielius, V.; Drejer, M.; Dornhoff, J.K.; Skrbic, N.; Lindqvist, D.N.; Hansen, H.C.B.; Rasmussen, L.H. (2022) Occurence and stability of carcinogenic illudane glucosides from Bracken in surface waters. Environmental Science: Processes and Impacts. 24: 277. https://doi.org/10.1039/D1EM00364J
[48] Jones, M.R.; Pinto, E.; Torres, M.A.; Dorr, F.; Mazur-Marzec, H.; Szubert, K.; Tartaglione, L.; Dell’Aversano, C.; Miles, C.O; Beach, D.G.; McCarron, P.; Sivonen, K.; Fewer, D.P.; Jokela, J.; Janssen, E.M.-L. (2021) CyanoMetCB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res. 196: 117017. https://doi.org/10.1016/j.watres.2021.117017
[47] Schneider, M., Grossi, M. F., Gadara, D., Spáčil, Z., Babica, P. & Bláha, L. (2021). Treatment of cylindrospermopsin by hydroxyl and sulfate radicals: Does degradation equal detoxification? Journal of Hazardous Materials. (in press); DOI: 10.1016/j.jhazmat.2021.127447.
[46] Gunthardt, B. F., Wettstein, F. E., Hollender, J., Singer, H., Harri, J., Scheringer, M., Hungerbuhler, K. & Bucheli, T. D. (2021). Retrospective HRMS Screening and Dedicated Target Analysis Reveal a Wide Exposure to Pyrrolizidine Alkaloids in Small Streams. Environmental Science & Technology, 55, 1036−1044; DOI: 10.1021/acs.est.0c06411
[45] Mrkajic, N. S., Hama, J. R., Strobel, B. W., Hansen, H. C. B., Rasmussen, L. H., Pedersen, A-K., Christensen, S. C.B. & Hedegaard, M. J. (2021). Removal of phytotoxins in filter sand used for drinking water treatment. Water Research, 205, 117610; DOI: 10.1016/j.watres.2021.117610.
[44] Hansen, H. C. B., Hilscherova, K.& Bucheli, T. D. (2021) Natural toxins: environmental contaminants calling for attention. Environmental Science Europe, 33(112); DOI: 10.1186/s12302-021-00543-6.
[43] Hama, J. R., Kolpin, D. W., LeFevre, G. H., Hubbard, L. E., Powers, M. M. & Strobel, B. W. (2021). Exposure and Transport of Alkaloids and Phytoestrogens from Soybeans to Agricultural Soils and Streams in the Midwestern United States. Environmental Science & Technology. 55, 11029−11039; DOI: 10.1021/acs.est.1c01477.
[42] Günthardt, B. F., Hollender, J., Scheringer, M., Hungerbühler, K., Nanusha, M. Y., Brack W. & Bucheli, T. D.(2021). Aquatic occurrence of phytotoxins in small streams triggered by biogeography, vegetation growth stage, and precipitation. Science of the Total Environment, 798; DOI: 10.1016/j.scitotenv.2021.149128.
[41] Filatova, D., Jones, M.R., Haley, J.A., Núñez, O., Farré, M, Janssen, E.ML. (2021). Cyanobacteria and their secondary metabolites in three freshwater reservoirs in the United Kingdom. Environmental Science Europe, 33(29); DOI: 10.1186/s12302-021-00472-4.
[40] Picardo, M., Núñez, O. & Farré, M. (2021). A data independent acquisition all ion fragmentation mode tool for the suspect screening of natural toxins in surface water. MethodsX, 8,101286; DOI: 10.1016/j.mex.2021.101286.
[39] Wu, J.S., Clauson-Kaas, F., Lindqvist, D. N., Rasmussen, L. H., Strobel, B. W. & Hansen, H. C. B. (2021). Does the natural carcinogen ptaquiloside
degrade readily in groundwater? Environmental Sciences Europe, 33(24); DOI: 10.1186/s12302-021-00468-0.
[38] García-Jorgensen, D. B., Diamantopoulos, E., Kisielius V., Rosenfjeld, M., Rasmussen, L.H., Strobel B.W. & Hansen, H. C. B. (2021). Bracken growth, toxin production and transfer from plant to soil: a 2‑year monitoring study. Environmental Sciences Europe, 33(45); DOI: 10.1186/s12302-021-00484-0.
[37] Skrbic, N., Kisielius V., Pedersen, A., Christensen, S. C. B., Hansen, H.C.B. & Rasmussen, L.H. (2021). Occurrence of carcinogenic illudane glycosides in drinking water wells. Environmental Sciences Europe, 33(44); DOI: 10.1186/s12302-021-00486-y.
[36] Schönsee, C. D., Wettstein, F. E. & Bucheli, T.D. (2021). Disentangling Mechanisms in Natural Toxin Sorption to Soil Organic Carbon. Environmental Science and Technology, 55, 8, 4762–4771; DOI: 10.1021/acs.est.0c06634.
[35] Schönsee, C. D., Wettstein, F. E. & Bucheli, T.D. (2021). Phytotoxin sorption to clay minerals. Environmental Sciences Europe, 33(36); DOI: 10.1186/s12302-021-00469-z.
[34] Liang, X., Christensen, J. H. & Nielsen, N.P. (2021). Enhancing the power of liquid chromatography–Mass spectrometry for chemical fingerprinting of phytotoxins in the environment. Journal of Chromatography A, 1642; DOI: 10.1016/j.chroma.2021.462027.
[33] Nanusha, M. Y., Krauss, M., Strobel B.W., Sørensen, B.G., Schulze, T., & Brack, W. (2021) Occurrence of plant secondary metabolite fingerprints in river waters from Eastern Jutland, Denmark. Environmental Sciences Europe 33(25); DOI: 10.1186/s12302-021-00464-4.
[32] Natumi, R., Marcotullio, S. & Janssen, E.ML. (2021). Phototransformation kinetics of cyanobacterial toxins and secondary metabolites in surface waters. Environmental Sciences Europe 33(26); DOI: 10.1186/s12302-021-00465-3
[31] Kubíčková, B., Ramwell, C., Hilscherová, K. & Jacobs M.N. (2021). Highlighting the gaps in hazard and risk assessment of unregulated Endocrine Active Substances in surface waters: retinoids as a European case study. Environmental Sciences Europe 33(20); DOI: 10.1186/s12303-020-00428-0.
[30] Griffiths, M.R., Strobel, B.W., Hama, J.R. & Cedergreen, N. (2021). Toxicity and risk of plant-produced alkaloids to Daphnia magna. Environmental Sciences Europe, 33(1), pp.1-12.; DOI: doi.org/10.1186/s12302-020-00452-0.
[29] Picardo, M., Sanchís, J., Núñez, O. & Farré, M. (2020). Suspect screening of natural toxins in surface and drinking water by high-performance liquid chromatography / high-resolution mass spectrometry. Chemosphere, 261, 127888; DOI: 10.1016/j.chemosphere.2020.127888.
[28] Hama, J. R. & Strobel, B.W. (2021). Occurrence of pyrrolizidine alkaloids in ragwort plants, soils and surface waters at the field scale in grassland. Science of The Total Environment, 755(1), 142822; DOI: 10.1016/j.scitotenv.2020.142822.
[27] Filatova, D., Picardo, M., Núñez, O. & Farré, M. (2020). Analysis, levels and seasonal variation of cyanotoxins in freshwater ecosystems. Trends in Environmental Analytical Chemistry, 26, e00091; DOI: 10.1016/j.teac.2020.e00091.
[26] Nanusha, M. Y., Krauss, M., Schönsee, C. D., Günthardt, B. F., Bucheli, T. D. & Brack, W. (2020). Target screening of plant secondary metabolites in river waters by liquid chromatography coupled to high-resolution mass spectrometry (LC–HRMS). Environmental Sciences Europe, 32,142; DOI: 10.1186/s12302-020-00399-2.
[25] Picardo, M., Núñez, O. & Farré, M. (2020). Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity. Toxins ,12(12), 752; DOI: 10.3390/toxins12120752.
[24] Kisielius V., Hama, J.R., Skrbic, N., Hansen, H.C.B., Strobel, B.W. & Rasmussen, L.H. (2020). The invasive butterbur contaminates stream and seepage water in groundwater wells with toxic pyrrolizidine alkaloids. Scientific Reports, 10, 19784; DOI: 10.1038/s41598-020-76586-1.
[23] Hama, J.R. & Strobel, B.W. (2020). Natural alkaloids from narrow-leaf and yellow lupins transfer to soil and soil solution in agricultural fields. Environmental Sciences Europe, 32, 126; DOI: 10.1186/s12302-020-00405-7.
[22] Skrbic, N., Pedersen, A., Christensen, S. C. B., Hansen, H. C. B. & Rasmussen, L. H. (2020). A novel method for determination of the natural toxin ptaquiloside in ground and drinking water. Water, 12(10), 2852; DOI: 10.3390/w12102852.
[21] Nanusha, M.Y., Krauss, M. & Brack, W. (2020). Non‑target screening for detecting the occurrence of plant metabolites in river waters. Environmental Sciences Europe, 32, 130; DOI: 10.1186/s12302-020-00415-5.
[20] García-Jorgensen, D. B., Hansen, H. C. B., Abrahamsen, P. & Diamantopoulos, E. (2020). A novel model concept for modelling the leaching of natural toxins: results for the case of ptaquiloside. Environmental Science: Processes & Impacts, 22(8), 1768-1779; DOI: 1039/D0EM00182A.
[19] Schneider, M., Rataj, R., Kolb, J. F. & Bláha, L. (2020). Cylindrospermopsin is effectively degraded in water by pulsed corona-like and dielectric barrier discharges. Environmental Pollution, 266 (2), 115423; DOI: 10.1016/j.envpol.2020.115423.
[18] Schneider, M. & Bláha, L. (2020). Advanced oxidation processes for the removal of cyanobacterial toxins from drinking water. Environmental Sciences Europe, 32, 94; DOI: 10.1186/s12302-020-00371-0.
[17] Natumi, R. S. & Janssen, E. M.-L. (2020). Cyanopeptide co-production dynamics beyond microcystins and effects of growth stages and nutrient availability. Environmental Science & Technology, 54(10), 6063–6072; DOI: 10.1021/acs.est.9b07334.
[16] Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., Tartaglione, L., Dell'Aversano, C., Miles, C. O., Beach, D. G., McCarron, P., Sivonen, K., Fewer, D. P., Jokela, J. & Janssen, E. M.-L. (2020). Comprehensive database of secondary metabolites from cyanobacteria. BioRxiv; DOI: 10.1101/2020.04.16.038703.
[15] Filatova, D., Núñez, O. & Farré, M. (2020). Ultra-Trace Analysis of Cyanotoxins by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Toxins, 12(4), 247; DOI: 10.3390/toxins12040247.
[14] Egli, C. M., Natumi, R. S., Jones, M. R. & Janssen, E. M.-L. (2020). Inhibition of Extracellular Enzymes Exposed to Cyanopeptides. Chimia (Aarau), 74(3), 122–128; DOI: 10.2533/chimia.2020.122.
[13] Günthardt, B. F., Schönsee, C. D., Hollender, J., Hungerbühler, K., Scheringer, M. & Bucheli, T. D. (2020). “Is there anybody else out there?” – First Insights from a Suspect Screening for Phytotoxins in Surface Water. CHIMIA, 74(3), 129–135; DOI: 10.2533/chimia.2020.129.
[12] Schönsee, C. D. & Bucheli, T.D. (2020). Experimental Determination of Octanol–Water Partition Coefficients of Selected Natural Toxins. Journal of Chemical & Engineering Data, 65(4), 1946-1953; DOI: 10.1021/acs.jced.9b01129.
[11] Liang, X., Nielsen, N.P. & Christensen, J. H. (2020). Selective pressurized liquid extraction of plant secondary metabolites: Convallaria majalis L. as a case. Analytica Chimica Acta: X, 4, 100040; DOI: 10.1016/j.acax.2020.100040.
[10] Brozman, O., Kubíčková, B., Babica, P. & Labohá, P. (2020). Microcystin-LR does not alter cell survival and intracellular signaling in human bronchial epithelial cells. Toxins, 12(3), 165; DOI: 10.3390/toxins12030165.
[9] Schneider de Oliveira, L.G., Boabaid F.M., Kisielius V., Rasmussen L.H., Buroni F., Lucas M., Schild C.O., Lopez F., Machado M. & Riet-Correa F. (2020). Hemorrhagic diathesis in cattle due to consumption of Adiantopsis chlorophylla (Swartz) Fée (Pteridaceae). Toxicon: X, 5, 100024; DOI: 10.1016/j.toxcx.2020.100024.
[8] Kisielius, V., Lindqvist, D.N., Thygesen, M.B., Rodamer, M., Hansen, H.C.B. & Rasmussen, L.H. (2020). Fast LC-MS quantification of ptesculentoside, caudatoside, ptaquiloside and corresponding pterosins in bracken ferns. Journal of Chromatography B, 1138, 121966; DOI: 10.1016/j.jchromb.2019.121966.
[7] Hama, J.R. & Strobel B. W. (2019). Pyrrolizidine alkaloids quantified in soil and water using UPLC-MS/MS. RSC Advances, 9, 30350-57; DOI: 10.1039/C9RA05301H.
[6] Aranha PCdR, Rasmussen L.H., Jensen HME, Hansen, H.C.B. & Friis C. (2019). Fate of ptaquiloside—A bracken fern toxin—In cattle. PLoS ONE 14(6): e0218628. DOI: 10.1371/journal.pone.0218628.
[5] Kubíčková, B.; Babica, P.; Hilscherova, K. & Šindlerová, L. (2019). Effects of Cyanobacterial Toxins on the Human Gastrointestinal Tract and the Mucosal Innate Immune System. Environmental Sciences Europe, 31, 31; DOI: 10.1186/s12302-019-0212-2.
[4] Janssen, E.M.-L. (2019). Cyanobacterial peptides beyond microcystins – A review on co-occurrence, toxicity, and challenges for risk assessment, Water Research, 151, 488-499; DOI: 10.1016/j.watres.2018.12.048.
[3] Kubíčková, B., Labohá, P., Hildebrandt, J.-P., Hilscherová, K. & Babica, P. (2019). Effects of cylindrospermopsin on cultured immortalized human airway epithelial cells. Chemosphere, 220, 620-628; DOI: 10.1016/j.chemosphere.2018.12.157.
[2] Picardo, M., Filatova D., Núñez, O. & Farré, M. (2019). Recent advances in the detection of natural toxins in freshwater environments. Trend on Analytical Chemistry. 112, 75-86; DOI: 10.1016/j.trac.2018.12.017.
[1] Bucheli, T.D., Strobel B.W. & Hansen H.C.B. (2018). Personal Care Products Are Only One of Many Exposure Routes of Natural Toxic Substances to Humans and the Environment. Cosmetics, 5(1), 10; DOI: 10.3390/cosmetics5010010.
Thesis
[1] Jawameer Hama (ESR 8): Fate and analysis of natural alkaloids from plants in soil and surface water. (October 2020).
[2] Vaidotas Kiliselius (ESR7): Toxic secondary metabolites from plants: A new aspect of water quality. (November 2020).
[3] Barbara Grünhardt (affiliated fellow): A systematic assesment of the aquatic exposure to phytotoxins. (November 2020).
[4] Carina Schönsee (ESR9): Experimental determination of physicochemical properties driving phytotoxin environmental mobility. (November 2020)
[5] Massimo Picardo (ESR7): Suspect screening of natural toxins in surface water reservoirs. (January 2021).
[6] Regiane Sanches Natumi (ESR 10): Production dynamics and photochemical fate of novel cyanopeptides in surface water. (March 2021)
[7] Daniel Bernardo Garcia Jorgensen (ESR11): Modelling the fate of natural toxins in the environment
[8] Daria Filatova (ESR 6): Origin and release of cyanotoxins in surface water reservoirs. (July 2021).
[9] Xiaomeng Liang (ESR2): Tracking Natural Toxins from Plant to Environment Analytical Tools for Chemical Fingerprinting of Phytotoxins in Plant, Soil and Water. (September 2021).
Other relevant publications:
Thompson, T.J., Briggs, M.A., Phillips, P.J., Blazer, V.S., Smalling, K.L., Kolpin, D.W., & Wagner, T. (2020). Groundwater discharges as a source of phytoestrogens and other agriculturally derived contaminants to streams. Science of The Total Environment, 142873; DOI: 10.1016/j.scitotenv.2020.142873.
Günthardt, B.F., Hollender, J., Hungerbühler, K., Scheringer, M., &Bucheli, T.D.* (2018). A comprehensive toxic plant-phytotoxin (TPPT) database and its application to assess their aquatic micropollution potential. Journal of Agricultural and Food Chemistry, 66(29), 7577-7588; DOI: 10.1021/acs.jafc.8b01639.
Brack, W., Ait-Aissa, S., Altenburger, R., Cousins, I., Dulio, V., Escher, B., Focks, A., Ginebreda, A., Hering, D., Hilscherová, K, Hollender, J., Hollert, H., Kortenkamp, A., López de Alda, M., Posthuma, L., Schymanski, E., Segner H, & Slobodnik J. (2019) . Let us empower the WFD to prevent risks of chemical pollution in European rivers and lakes. Environmental Sciences Europe, 31, 47, DOI: 10.1186/s12302-019-0228-7.